Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant.
نویسندگان
چکیده
Catalysis by dihydrofolate reductase from the moderately thermophilic bacterium Geobacillus stearothermophilus (BsDHFR) was investigated by isotope substitution of the enzyme. The enzyme kinetic isotope effect for hydride transfer was close to unity at physiological temperatures but increased with decreasing temperatures to a value of 1.65 at 5 °C. This behavior is opposite to that observed for DHFR from Escherichia coli (EcDHFR), where the enzyme kinetic isotope effect increased slightly with increasing temperature. These experimental results were reproduced in the framework of variational transition-state theory that includes a dynamical recrossing coefficient that varies with the mass of the protein. Our simulations indicate that BsDHFR has greater flexibility than EcDHFR on the ps-ns time scale, which affects the coupling of the environmental motions of the protein to the chemical coordinate and consequently to the recrossing trajectories on the reaction barrier. The intensity of the dynamic coupling in DHFRs is influenced by compensatory temperature-dependent factors, namely the enthalpic barrier needed to achieve an ideal transition-state configuration with minimal nonproductive trajectories and the protein disorder that disrupts the electrostatic preorganization required to stabilize the transition state. Together with our previous studies of other DHFRs, the results presented here provide a general explanation why protein dynamic effects vary between enzymes. Our theoretical treatment demonstrates that these effects can be satisfactorily reproduced by including a transmission coefficient in the rate constant calculation, whose dependence on temperature is affected by the protein flexibility.
منابع مشابه
Thermal Adaptation of Dihydrofolate Reductase from the Moderate Thermophile Geobacillus stearothermophilus
The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ~30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only...
متن کاملComparative Hydrogen–Deuterium Exchange for a Mesophilic vs Thermophilic Dihydrofolate Reductase at 25 °C: Identification of a Single Active Site Region with Enhanced Flexibility in the Mesophilic Protein
The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolu...
متن کاملMolecular Engineering of the Geobacillus stearothermophilus α-Amylase and Cel5E from Chlostridium thermocellim; In Silico Approach
Background: Considering natural thermal stability, Geobacillus stearothermophilus amylase and Cel5E from Clostridium thermocellum are good candidates for industrial applications. To be compatible with the industrial applications, this enzyme should be stable in the high temperatures, so any improvement in their thermal stability is valuable.Objectives: Us...
متن کاملTemperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency.
We report hydrogen deuterium exchange by mass spectrometry (HDX-MS) as a function of temperature in a thermophilic dihydrofolate reductase from Bacillus stearothermophilus (Bs-DHFR). Protein stability, probed with circular dichroism, established an accessible temperature range of 10 degrees C to 55 degrees C for the interrogation of HDX-MS. Although both the rate and extent of HDX are sensitive...
متن کاملDifferent Dynamical Effects in Mesophilic and Hyperthermophilic Dihydrofolate Reductases
The role of protein dynamics in the reaction catalyzed by dihydrofolate reductase from the hyperthermophile Thermotoga maritima (TmDHFR) has been examined by enzyme isotope substitution ((15)N, (13)C, (2)H). In contrast to all other enzyme reactions investigated previously, including DHFR from Escherichia coli (EcDHFR), for which isotopic substitution led to decreased reactivity, the rate const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 49 شماره
صفحات -
تاریخ انتشار 2014